Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(15): 5860-5868, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567987

RESUMEN

Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving the desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel composition is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e., proteins) and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with (1) a multi-angle light scattering detector (RPLC-MALS) or (2) high resolution mass spectrometry (RPLC-MS) and a Fourier-transform based deconvolution algorithm. We envision that this analytical strategy could be generalized to characterize critical quality attributes of other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.


Asunto(s)
Hidrogeles , Nanopartículas , Hidrogeles/química , Cromatografía de Fase Inversa/métodos , Polietilenglicoles/química , Aerosoles
2.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014217

RESUMEN

Optical methods for studying the brain offer powerful approaches for understanding how neural activity underlies complex behavior. These methods typically rely on genetically encoded sensors and actuators to monitor and control neural activity. For microendoscopic calcium imaging, injection of a virus followed by implantation of a lens probe is required to express a calcium sensor and enable optical access to the target brain region. This two-step process poses several challenges, chief among them being the risks associated with mistargeting and/or misalignment between virus expression zone, lens probe and target brain region. Here, we engineer an adeno-associated virus (AAV)-eluting polymer coating for gradient refractive index (GRIN) lenses enabling expression of a genetically encoded calcium indicator (GCaMP) directly within the brain region of interest upon implantation of the lens. This approach requires only one surgical step and guarantees alignment between GCaMP expression and lens in the brain. Additionally, the slow virus release from these coatings increases the working time for surgical implantation, expanding the brain regions and species amenable to this approach. These enhanced capabilities should accelerate neuroscience research utilizing optical methods and advance our understanding of the neural circuit mechanisms underlying brain function and behavior in health and disease. Significance Statement: We engineered a polymer coating for gradient refractive index (GRIN) lenses that provides controlled release of adeno-associated viruses (AAVs). This technology enables expression of a genetically encoded calcium indicator (GCaMP) directly at the brain region of interest upon implantation of the lens. Compared to current methods, our coating offers two important improvements. First, it simplifies surgery by combining GCaMP expression and lens placement in one step, saving time and ensuring alignment. Second, controlled release of AAV from these coatings extends the time available for surgery, making it possible to implant lenses in deeper parts of the brain and in more species. These advances accelerate neuroscience research and deepen our understanding of how neural circuits impact both health and disease.

3.
bioRxiv ; 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609276

RESUMEN

Supramolecular hydrogels formed through polymer-nanoparticle interactions are promising biocompatible materials for translational medicines. This class of hydrogels exhibits shear-thinning behavior and rapid recovery of mechanical properties following applied stresses, providing desirable attributes for formulating sprayable and injectable therapeutics. Characterization of hydrogel composition and loading of encapsulated drugs is critical to achieving desired rheological behavior as well as tunable in vitro and in vivo payload release kinetics. However, quantitation of hydrogel compositions is challenging due to material complexity, heterogeneity, high molecular weight, and the lack of chromophores. Here, we present a label-free approach to simultaneously determine hydrogel polymeric components and encapsulated payloads by coupling a reversed phase liquid chromatographic method with a charged aerosol detector (RPLC-CAD). The hydrogel studied consists of modified hydroxypropylmethylcellulose, self-assembled PEG-b-PLA nanoparticles, and a therapeutic compound, Bimatoprost. The three components were resolved and quantitated using the RPLC-CAD method with a C4 stationary phase. The method demonstrated robust performance, applicability to alternative cargos (i.e. proteins), and was suitable for composition analysis as well as for evaluating in vitro release of cargos from the hydrogel. Moreover, this method can be used to monitor polymer degradation and material stability, which can be further elucidated by coupling the RPLC method with high resolution mass spectrometry and a Fourier-transform based deconvolution algorithm. To our knowledge, this is the first RPLC-CAD method for characterizing the critical quality attributes of supramolecular hydrogels. We envision this analytical strategy could be generalized to characterize other classes of supramolecular hydrogels, establish structure-property relationships, and provide rational design guidance in hydrogel drug product development.

4.
bioRxiv ; 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36993717

RESUMEN

Equitable global access to vaccines requires we overcome challenges associated with complex immunization schedules and their associated economic burdens that hinder delivery in under resourced environments. The rabies vaccine, for example, requires multiple immunizations for effective protection and each dose is cost prohibitive, and therefore inaccessibility disproportionately impacts low- and middle-income countries. In this work we developed an injectable hydrogel depot technology for sustained delivery of commercial inactivated rabies virus vaccines. In a mouse model, we showed that a single immunization of a hydrogel-based rabies vaccine elicited comparable antibody titers to a standard prime-boost bolus regimen of a commercial rabies vaccine, despite these hydrogel vaccines comprising only half of the total dose delivered in the bolus control. Moreover, these hydrogel-based vaccines elicited similar antigen-specific T-cell responses and neutralizing antibody responses compared to the bolus vaccine. Notably, we demonstrated that while addition of a potent clinical TLR4 agonist adjuvant to the gels slightly improved binding antibody responses, inclusion of this adjuvant to the inactivated virion vaccine was detrimental to neutralizing responses. Taken together, these results suggest that these hydrogels can enable an effective regimen compression and dosesparing strategy for improving global access to vaccines.

5.
Adv Sci (Weinh) ; 9(28): e2103677, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35975424

RESUMEN

When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.


Asunto(s)
Melanoma , Nanopartículas , Anticuerpos , Antígenos CD40 , Citocinas , Humanos , Hidrogeles/química , Polímeros , Tomografía Computarizada por Rayos X
6.
Adv Mater ; 33(51): e2104362, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34651342

RESUMEN

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum are found unable to elicit neutralizing responses following a prime-boost immunization. Here, it has been shown that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hidrogeles/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/química , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/virología , Islas de CpG/genética , Femenino , Humanos , Inmunidad Humoral , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Polímeros/química , Dominios Proteicos/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/aislamiento & purificación , Vacunas de Subunidad/química , Vacunas de Subunidad/metabolismo
7.
bioRxiv ; 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-33821276

RESUMEN

The development of effective vaccines that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is efficient to manufacture, highly stable, and a target for neutralizing antibodies. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, we found that clinically-relevant adjuvants Alum, AddaVax, and CpG/Alum were unable to elicit neutralizing responses following a prime-boost immunization. Here we show that sustained delivery of an RBD subunit vaccine comprising CpG/Alum adjuvant in an injectable polymer-nanoparticle (PNP) hydrogel elicited potent anti-RBD and anti-spike antibody titers, providing broader protection against SARS-CoV-2 variants of concern compared to bolus administration of the same vaccine and vaccines comprising other clinically-relevant adjuvant systems. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed that hydrogel-based vaccines elicited potent neutralizing responses when bolus vaccines did not. Together, these results suggest that slow delivery of RBD subunit vaccines with PNP hydrogels can significantly enhance the immunogenicity of RBD and induce neutralizing humoral immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...